Resistance estimation for temperature determination in PMSMs through signal injection

Wilson, S. D. and Jewell, G. W. and Stewart, Paul (2005) Resistance estimation for temperature determination in PMSMs through signal injection. In: 2005 IEEE International Conference on Electric Machines and Drives, May 15-18, 2005, San Antonio, Texas, U.S..

Documents
Resistance estimation for temperature determination in PMSMs through signal injection
Real-time thermal management of electrical machines relies on sufficiently accurate indicators of temperature within a machine. One indicator of temperature in a permanent-magnet synchronous motor (PMSM) is the stator winding resistance. Detection of PMSM winding resistance in the literature has been made on machines with relatively high resistances, where the resistive voltage vector is significant under load. This paper describes a technique applied to sense the winding resistance where the resistance is low and hence the resistive is voltage difficult to detect. A current injection method is applied which enables the resistance to be determined, and hence the winding temperature in non-salient machines. This method can be applied under load, and in a manner that does not disturb shaft torque, or speed. The method is able to distinguish between changes in the electro-motive force (EMF) constant and the resistive voltage. Simulated results on an experimentally verified model illustrate the effectiveness of this approach
[img]
[Download]
[img]
Preview
PDF
wilson_conference_upload.pdf - Whole Document

2880Kb

Abstract

Real-time thermal management of electrical machines relies on sufficiently accurate indicators of temperature within a machine. One indicator of temperature in a permanent-magnet synchronous motor (PMSM) is the stator winding resistance. Detection of PMSM winding resistance in the literature has been made on machines with relatively high resistances, where the resistive voltage vector is significant under load. This paper describes a technique applied to sense the winding resistance where the resistance is low and hence the resistive is voltage difficult to detect. A current injection method is applied which enables the resistance to be determined, and hence the winding temperature in non-salient machines. This method can be applied under load, and in a manner that does not disturb shaft torque, or speed. The method is able to distinguish between changes in the electro-motive force (EMF) constant and the resistive voltage. Simulated results on an experimentally verified model illustrate the effectiveness of this approach

Item Type:Conference or Workshop Item (Presentation)
Additional Information:Real-time thermal management of electrical machines relies on sufficiently accurate indicators of temperature within a machine. One indicator of temperature in a permanent-magnet synchronous motor (PMSM) is the stator winding resistance. Detection of PMSM winding resistance in the literature has been made on machines with relatively high resistances, where the resistive voltage vector is significant under load. This paper describes a technique applied to sense the winding resistance where the resistance is low and hence the resistive is voltage difficult to detect. A current injection method is applied which enables the resistance to be determined, and hence the winding temperature in non-salient machines. This method can be applied under load, and in a manner that does not disturb shaft torque, or speed. The method is able to distinguish between changes in the electro-motive force (EMF) constant and the resistive voltage. Simulated results on an experimentally verified model illustrate the effectiveness of this approach
Keywords:Resiatance estimation, Permanent Magnet AC Motor, Temperature estimation
Subjects:H Engineering > H620 Electrical Engineering
Divisions:College of Science > School of Engineering
ID Code:2261
Deposited By:INVALID USER
Deposited On:31 Mar 2010 13:27
Last Modified:13 Mar 2013 08:35

Repository Staff Only: item control page