
Structural Complexity and Decay in FLOSS Systems:
An Inter-Repository Study

Andrea Capiluppi Karl Beecher
Centre of Research on Open Source Software – CROSS

Department of Computing
University of Lincoln, UK

{acapiluppi,kbeecher}@lincoln.ac.uk

Abstract

Past software engineering literature has firmly estab-
lished that software architectures and the associated code
decay over time. Architectural decay is, potentially, a
major issue in Free/Libre/Open Source Software (FLOSS)
projects, since developers sporadically joining FLOSS
projects do not always have a clear understanding of the
underlying architecture, and may break the overall concep-
tual structure by several small changes to the code base.

This paper investigates whether the structure of a FLOSS
system and its decay can also be influenced by the reposi-
tory in which it is retained: specifically, two FLOSS repos-
itories are studied to understand whether the complexity of
the software structure in the sampled projects is compara-
ble, or one repository hosts more complex systems than the
other. It is also studied whether the effort to counteract this
complexity is dependent on the repository, and the gover-
nance it gives to the hosted projects.

The results of the paper are two-fold: on one side, it is
shown that the repository hosting larger and more active
projects presents more complex structures. On the other
side, these larger and more complex systems benefit from
more anti-regressive work to reduce this complexity.

1 Introduction

The “success” of FLOSS projects in past literature has
been empirically evaluated via process and resource at-
tributes, such as the frequency of releases, the number of
developers, or by using proxies of their pool of users. In
other words, theevolvabilityof FLOSS systems has been
used as a term of reference for their success [10, 34, 17]. In
terms of Lehman’s laws of software evolution, FLOSS (E-
type) systems, when growing in size and capabilities, will
also grow in complexity as they evolve (according to the 6th

law). They will also require increasing levels of work done
to control complexity (i.e. “anti-regressive work”, as termed
in the 2nd law) and quality (as stated by the 7th law) [26] in
order to maintain their evolvability. Among FLOSS well-
known projects, such as the so-called LAMP stack (Linux,
Apache, MySQL, Perl), the Debian family, and *BSDs,
have achieved higher evolvability than others [30]. Their
evolvability has been made possible by attracting a large
community of users, as well as a strong and dynamic base
of developers [34]. The user community initiates the need
for change while the developers make it happen [33], and
both are key factors in the evolution process [10].

A by-product of the continuous evolution of software
systems has been identified in the deterioration of the in-
tegrity of the software. Such deterioration may manifest
itself as growing complexity [25], and/or the loss of archi-
tectural and conceptual integrity [32]. This phenomenon,
sometimes calledcode decayin the literature (e.g. [16]) is
likely to make it progressively more difficult to understand
the inner workings of the software and, hence, to imple-
ment functional additions and changes. Similarly to tradi-
tional in-house software, it has been noted that increasing
the size of FLOSS systems has an effect on their underly-
ing complexity: a growing pattern has been detected when
evaluating complexity with either the traditional cyclomatic
measures [27] (as studied in [8] and [22]), or counting the
compilation warnings [28] as a proxy for FLOSS system’s
complexity. It was also observed that the anti-regressive
work and size had similar growth patterns [8].

The evolvability of FLOSS systems has been found un-
evenly distributed when mining large repositories, such as
SourceForge [17]: the vast majority of hosted projects is
small, with few developers and does not go beyond the first
public release [23]. On the other hand, it has been found
that the repository in which they are retained acts as an ex-
ogenous factor for the evolvability of FLOSS projects [4, 7].
Results have in fact shown that, on average, different types

1



of repositories benefit from different levels of evolvabil-
ity and success: repositories with low barriers to entry for
developers (such as SourceForge) are more likely to show
lower evolvability, while forges with a stricter control of
access (such as the Debian distribution) have been proven
to host more evolvable projects.

The present paper builds upon the concept of the FLOSS
repository being a differentiating factor for project evolv-
ability: on top of that, it argues that these exogenous factors
affect other internal product attributes also. Specifically,
we study two well knwon FLOSS repositories, Debian and
SourceForge: it will be studied whether those repositories
that experience higher levels of evolutionary activity (De-
bian, as found in [4]) also contain projects that have higher
levels of structural complexity. We also investigate whether
the effort for controlling complexity shows also differences
with repositories with less activity (e.g., SourceForge).

This paper is structured as follows: section 2 introduces
the definitions of the empirical study, section 3 defines
the research hypotheses, the statistical tests and the met-
rics used to reject or not the null hypotheses. Section 4
will present the results of these tests, and the descriptionof
what differences were detected when comparing the struc-
tural characteristics of different FLOSS repositories. Sec-
tion (threats) will encompass the threats to validity of the
empirical study, while section 6 concludes, presenting also
potential future works.

2 Empirical Study Definition and Planning

This section introduces the definitions used in the fol-
lowing empirical study and presents the general objective
of this work, and it does that in the formal way proposed
by theGoal-Question-Metric(GQM) framework [3]. The
GQM approach evaluates whether a goal has been reached,
by associating that goal with questions that explain it from
an operational point of view, and providing the basis for
applying metrics to answer these questions. This study fol-
lows this approach by developing, from the wider goal of
this research, the necessary questions to address the goal
and then determining the metrics necessary for answering
the questions. By following the GQM, two research ques-
tions will be proposed, that in turn will be distilled into hy-
potheses to be statistically tested in the next section 3.

Goal: The long term objective of this research is to un-
derstand whether different FLOSS repositories receive dif-
ferent levels of evolutionary activity, and whether this fact
is correlated to different levels of complexity. In terms of
Lehman’s laws, the goal is to demonstrate that different
FLOSS repositories face different levels of complexity.

Question: Two research questions are proposed:

• Do the projects in each repository have significantly
different levels of complexity on average?

• And, if there is such difference, is there a correlation
between a larger evolvability of FLOSS projects and
the amount of work done to control their complexity
(i.e., anti-regressive work)?

Metric: Source code is organized infiles which pro-
vide both creation and storage units and separate the total
code into portions that can be separately compiled. In gen-
eral, within these files, programmers create functions, pro-
cedures or methods (depending on the programming lan-
guage) that perform operations on the data, so that the de-
sired computations are performed. The various functions
contained in the same file may differ in dimension and other
attributes, and provide a good trade-off between too fine (as
in “lines of code”) and too course (as in “source files”) gran-
ularity. Based on this trade-off, functions are selected asthe
basic unit of study in our research. We take advantage that
there are simple and well-defined approaches to measure
complexity at the function level. All the metrics used in this
study will be focused on the level of granularity of source
functions (or methods).

2.1 Definitions

The attributes considered in the present study are de-
scribed below:

Coupling: this attribute measures the degree to which each
source element relies on other elements (i.e. how in-
terconnected is the code) [13, 1]. Since this study is
conducted at the function level, the union of all the
function calls (and method invocations) form the net-
work of couplings in a system. Each coupling can
be uniquely categorized as inbound (cin) or outbound
(c out) (or fan-in and fan-out), depending on the di-
rection of the call. For example, function “sign off”
(Figure 1) has two inbound (fan-in) and three outbound
(fan-out) couplings.

Instability: from past literature, instability is the ratio of
fan-out coupling (co) to total coupling (co + c i) such
that I = c o

(c o + c i)
. This metric is an indicator of

the resilience to change of software components (as in
source functions) [21]. The range for this metric is 0
to 1, with I = 0 indicating the lowest instability for
an element andI = 1 indicating a completely unstable
element. The example in figure 1 therefore hasI =
0.6.



Figure 1. example of ‘inbound’ and ‘out-
bound’ couplings for the function “sign off”

2.2 Motivation

This work is based upon previous work carried out by
the authors [5]. In that work, six FLOSS repositories were
studied to test the hypotheses that they could be consid-
ered to belong to a type based on their characteristics, and
that each type attracted different rates of development. As
a result, FLOSS repositories were identified as exogenous
drivers that influence the evolutionary activity of their mem-
ber projects. The test was done by taking a sample of 50
projects from each repository (totalling 300 projects in all)
and comparing four historical indicators for each project:
commit rates, number of commiters, size, and age.

From the repositories examined, three repository types
were proposed and defined (open host, metaproject, and dis-
tribution). It was also pointed out (after a related study [4])
that a project may transition between repositories (illus-
trated in figure 2), and that its resulting evolutionary activity
can change in a way consistent with its new host repository.

While the previous works examined process metrics, this
work is the first step to adapting the same investigative ap-
proach to product metrics. As stated in the goal above, this
line of work will ascertain if the rates of evolutionary ac-
tivity already identified are related to the resulting product
complexity. This first step will examine just two reposito-
ries (Debian and SourceForge), and will be expanded to a
greater number of repositories in later work.

2.3 Repository Samples

The two FLOSS repositories to be mined (Debian and
SourceForge) are introduced here. A sample of 50 individ-
ual projects was chosen from each repository by a random-
izer, and each project was checked to ensure that it was not
also available in the counterpart repository. A checkout was
then performed on each member project of each sample’s
development trunk (from either their CVS or SVN source
control repositories); any branches were ignored. The list
of analyzed projects is shown in Table 6. Each of these
projects was then analyzed to obtain the metrics needed to
perform the investigation; the measures for the study are
those introduced above, and summarized in the columns of
Table 6.

Both Debian and SourceForge allow administrators to la-
bel their project’s development status. In order to compare
projects with a similar status, only the “stable” branch of the
repositories was considered for study. Considering projects
with similar status means highlighting the most evolvable
projects in both samples; but also dealing with pools of sim-
ilar sizes, thus avoiding inaccurate comparisons.

Debian A distribution of Linux that hosts a large number
of FLOSS projects. At the time of writing more than
20,000 projects are listed under the “stable” label.

SourceForge.netA well-known repository enabling the
hosting and management of a wide variety of free
software projects. At the time of writing there are
over 20,000 projects in the with the label “produc-
tion/stable” alone.

Figure 2. FLOSS forges and progression of
projects between them

3 Research Hypotheses

In this section, two research hypotheses are proposed:
each is then evaluated using a statistical significance test,



allowing either a retention of the null hypothesis (H0), or a
rejection of it in favour of the alternative hypothesis (H1).
The hypotheses, metrics and statistical tests used are sum-
marized in Table 1.

3.1 Hypothesis 1

The first hypothesis concerns the structural complexity
of the interconnected components that form each of the
project’s source code. It postulates that each repository will
contain projects that, on average, possess a level of struc-
tural complexity consistent with the amount of evolutionary
activity it receives. The provisions for testing this hypothe-
sis are shown in table 1.

Hypothesis Test

H
yp

ot
he

si
s

1

H0 Debian and SourceForge
projects have significantly
different levels of structural
complexity.

Id = Is ∩

Find = Fins ∩

Foutd = Fouts

H1 There is no significant dif-
ference between the levels of
structural complexity of Debian
and SourceForge projects.

Id 6= Is ∩

Find 6= Fins ∩

Foutd 6= Fouts

H
yp

ot
he

si
s

2 H0 Debian projects receive signifi-
cantly different rates of control
work to SourceForge projects.

CWd = CWs

H1 Debian and SourceForge
projects receive similar rates of
control work.

CWd 6= CWs

Keys
I = Instability
F in = Fan in
Fout = Fan out
CW = Control Work

Table 1. Summary of the hypotheses to be
tested

For each project, all functions are extracted and their fan-
in, fan-out and instability calculated, and the three summary
statistics also calculated (mean, maximum and variance).
Each summary statistic is then combined, per repository,
into a distribution to allow comparison of samples.

3.2 Hypothesis 2

The second hypothesis concerns the work done to orga-
nize and control the structural complexity of the compo-
nents (i.e., source functions). It postulates that each reposi-
tory will contain projects that, on average, have received an
historical level of work done to its structure that is consis-
tent to the amount of evolutionary activity it receives. That

is to say, repositories that have a history of greater evo-
lutionary activity contain projects that have received more
work done to control their structural complexity than repos-
itories receiving lesser evolutionary activity.

To test this hypothesis, projects from both repositories
will each have a series of uniformly spaced snapshots taken
from their history: this will be achieved by dividing the
number of commits in three distinct periods. Given the
number of commitsN , the three snapshots are taken in
these dates:

FP: First point; the snapshot taken on the date of commit
numberN

3

1.

MP: Mid point; the snapshot taken on the date of commit
number2N

3
.

LP: Last point; the latest available snapshot (i.e., on the
date of commit numberN ).

The overall number of commits for all the projects is re-
ported in Table 6.

Within each snapshot, each function’s fan-out and insta-
bility was compared to its counterpart in the succeeding
snapshot, where a counterpart exists. Functions that have
reduced in value between snapshots are counted: the control
(i.e., anti-regressive) work between two snapshots is the rate
of reduction in these values. Preferably, the number of in-
tervals should be larger to provide more precise results, and
it is intended that further work will address this. However,
three points provides a simple minimum that determines if
further, more fine-grained investigation is warranted.

4 Results

Hypothesis 1 This section summarizes the findings that
were collected by evaluating the first research hypothesis.
The attributes presented above were evaluated at the latest
available change recorded in the CVS or SVN repositories.
For each project in the two samples, the mean and variance
values of all the measures were used to compare the forges.
The maximum value was also used where appropriate.

To determine the statistical test to be used, a
Kolmogorov-Smirnov test was applied to the data sets to
establish a goodness of fit to the normal distribution, using
the R programming language [14]. The distributions were
found to be non-parametric, so theWilcoxon unpaired rank-
sum test(also known as the Mann-Whitney U test), a statis-
tical significance test for non-parametric data, was selected.

Table 2 shows the results of the significance tests; these
are one-tailed tests assuming that Debian possesses larger

1This arrangement was chosen instead of selecting snapshots1, N

2
,

andN because some projects in the sample begin with either little orno
material to analyze within their source repositories.



Mean Maximum Variance
Fan-in p = 0.0003 p = 0.0012 p = 0.019

Fan-out p = 0.0003 p < 0.0001 p < 0.0001

Instability p = 0.09* - p < 0.0001*

Table 2. Results of p-values for hypothesis 1,
one-tailed test

values, excepting * values, where the reverse is true. They
show that Debian projects can be considered more com-
plex in terms of functional coupling due to their greater in-
terconnectedness. However, the extent to which they are
significantly more complex is questionable. Whilst De-
bian projects consistently display levels of coupling thatare
more excessive and within a much greater range, the mean
values do not differ consistently.

Hypothesis 2 This hypothesis builds upon the evolution
of the projects within the repositories, and three snapshots
in time (as detailed above in section 3.2) of the source code
are taken and analyzed. It was hoped to apply this analysis
to all projects under investiation; however, the amount of
data storage and processing required per project was very
large. Given this eventuality, coupled with the authors’
planning to extend this investigation to other repositories, it
was decided to take only the five largest projects from each
sample and split each project into three uniformly spaced
points from an evolutionary point of view. Table 3 summa-
rizes the evolution (in terms of SLOCs) of the five largest
projects within SourceForge and Debian in the three se-
lected points in time. Major changes can be noted in the
Debian sub-sample, up to a maximum of 500% of the initial
size (e.g., the boson project); whereas the projects within
the SourceForge set have less evolvability, with a maximum
increase of 30% of the initial size (the moses project).

sf
.n

et

FP MP LP
fsdb 238,673 228,739 241,218
moses 81,289 99,791 105,955
ozone 73,755 89,061 63,790
QPolymer 87,248 86,939 86,971
xqilla 91,884 92,682 107,320

de
bi

an

boson 37,325 124,116 224,567
dia 95,191 120,736 146,550
openafs 522,667 595,220 618,553
openh323 52,014 84,045 234,285
Pike 73,377 143,906 173,196

Table 3. Growth in size – SLOCs

As discussed above, the investigation of the amount of
anti-regressive effort by the FLOSS developers into their

systems involved the comparison of the two attributes fan-
out and instability in three temporal points (FP, MP, LP).
Specifically, the reduction of these two attributes between
subsequent points was recorded twice (FP→ MP, and MP
→ LP, respectively), and the results reported in Table 4.

As visible in the table, the sub-sample of Debian projects
consistently receive a greater amount of architectural con-
trol work: on average, the fan-out was more reduced in the
Debian subsample than in SourceForge subsample in the
comparison both FP→ MP (5% against 2.2%) and MP→
LP (6.5% against 2.24%). Also the instabilities reflect this
divide, both in the first comparison (on average, the 8.9%
of the Debian subsample received a reduction of instabil-
ity, against the 1.51% of SourceForge), and in the second
one (7.36% against 1.23%). Interestingly, the one project in
the SourceForge sample that contradicts this tendency has
recently, since the data was gathered, been introduced into
theunstablebranch of Debian, rather than the stable branch
under investigation.

Further to the total control work performed, the effort
given to curbingexcessivefan-out was also investigated. A
fan-out value of greater than 7 was designated as exces-
sive [29]; similarly to the work shown in table 4, the pro-
portion of excessive functions brought below this threshold
between the historical snapshots in each project was cal-
culated (see table 5). As a general result, the same above
trends appear here as well: debian achieves an average of
9.52% in FP→ MP and 10.90% in MP→ LP and less vari-
ance; SourceForge achieves smaller amounts, on average
7.88% in FP→ MP and 6.52% in MP→ LP, but a larger
variance.

FP→ MP MP → LP

sf
.n

et

fsdb 1/407 0.2% 5/375 1.3%

moses 1/81 1.2% 1/115 0.90%

ozone 10/93 10.8% 6/81 7.4%

QPolymer 2/14 14.3% 0/12 0.0%

xqilla 17/132 12.9% 19/83 23.0%

de
bi

an

boson 6/39 15.4% 67/215 31.2%

dia 3/118 2.5% 8/183 4.4%

openafs 48/781 6.1% 22/822 2.7%

openh323 5/43 11.6% 6/87 6.9%

Pike 7/59 12.0% 10/107 9.3%

Table 5. Number of functions with excessive
fan-out reduced

5 Related Work

This paper relates mainly to other works that have ad-
dressed FLOSS from an evolutionary perspective and have
attempted to evaluate it using software metrics.



Fan-out Instability
FP→ MP MP → LP FP→ MP MP → LP

D
eb

ia
n

boson 41/1000 4.1% 731/4839 15.1% 73/1000 7.3% 620/4839 12.8%

dia 81/2864 2.8% 62/3642 1.7% 204/2864 7.1% 199/3642 5.5%

openafs 698/10020 7.0% 293/10555 2.8% 892/10020 8.9% 423/10555 4.7%

openh323 47/1281 3.7% 67/2168 3.1% 81/1281 6.3% 72/2168 3.3%

Pike 107/1450 7.4% 215/2201 9.8% 216/1450 14.9% 231/2201 10.5%

Averages 5.0% 6.5% 8.9% 7.4%

S
ou

rc
eF

or
ge fsdb 30/8836 0.30% 107/8755 1.2% 43/8836 0.50% 57/8755 0.65%

moses 28/3278 0.85% 15/3863 0.34% 49/3278 1.5% 33/3863 0.85%

ozone 111/5027 2.2% 82/5903 1.4% 109/5027 2.2% 76/5903 1.3%

QPolymer 4/648 0.62% 3/650 0.46% 5/648 0.77% 5/650 0.77%

xqilla 132/1896 7.0% 145/1847 7.8% 50/1896 2.6% 48/1847 2.6%

Averages 2.2% 2.2% 1.5% 1.2%

Table 4. Work done to reduce coupling between snapshots (num ber of functions with fan-out and/or
instability reduced)

The evolution of software is a research area with a strong
history in software engineering, and research into FLOSS-
specific evolution has been an area of growing significance
since works such as Godfrey and Tu’s [20] demonstration
of the growth of the Linux kernel that ran counter to tra-
ditional software engineering experience. Since the begin-
ning of the 2000s a number of works have investigated the
evolutionary dynamics of software projects developed in a
distributed heterogeneous environment and have addressed
a wide spectrum of attributes. As well as the analysis of pro-
cess and resource attributes, the free availability of develop-
ment artefacts has allowed the relatively easy examination
of how product attributes change over time, including the
product size [15, 18, 20, 24], complexity [9], and the nature
of its structure [9, 19].

This paper specifically addresses the structural charac-
teristics of FLOSS, explicitly the organization of the soft-
ware’s constituent components. A number of measures for
doing this exist and, in past work, such characteristics have
been examined at varying levels of granularity and with
consideration to specific paradigms. After the development
of structured programming relatively simple measures of
modular structure were developed and refined. For exam-
ple, coupling (a simple count of connections that measures
the interconnectedness of a module [12]) was refined into a
more complicated form, whereby a connection was judged
qualitatively [31]; this allows a “strength” to be assignedto
a connection, but is a somewhat informal measure that does
not lend itself easily to automated measurement. Similar de-
velopments have occurred with respect to measures that are
specific to object-oriented design only [11, 6]. Structural
metrics, like these examples, have been used as measures to
investigate the affects of interconnectedness on maintain-
ability attributes such as ripple effects [35], fault-proneness

[2] and maintenance effort [11].
Many existent FLOSS projects belong to some type of

repository, i.e. an organized central location for the pur-
pose of managing and controlling software development.
Most previous empirical works in FLOSS have used a small
number of exemplary projects, thereby affecting the gen-
eralizability of their findings, but some works have taken
large samples of projects [15, 17]. These samples have nor-
mally been taken from a specific repository, whereas this
work builds on previous works by the author [5, 7] in which
samples are taken from multiple distributions in order to
perform a comparison of them using statistical significance
testing. Part of this line of research shows that reposito-
ries can be considered as being one of a set of types, and
each type tends to undergo a particular level of evolutionary
activity as evidenced by the average size, age, number of
developers and rate of commits. Projects may originate in
any repository type and transition between them.

6 Conclusions and Future Works

This paper has been built on top of existing results [4, 5],
claiming that the rate of evolvability of a FLOSS project can
be influenced by the repository it resides in. By carrying
out a comparative analysis between two FLOSS reposito-
ries (Debian and SourceForge), it evaluated the architectural
structure of a sample of projects from each, and argued that
the same structure is influenced by the repository itself, as
an exogenous factor. Three attributes were used as proxies
of architectural structure: fan-in, fan-out and instability.

A static comparison was performed between the two
samples to ascertain if any absolute differences existed be-
tween them. Results from this investigation showed that
the projects residing in Debian typically had components



with excessive and more varied levels of interconnected-
ness. Apart from a low significance in the instability (i.e.,
90%), it could also be satisfactorily concluded that the av-
erage values differed significantly.

A second investigation was also carried out: a sub-
sample of five of the largest projects was taken from each
sample and its characteristics studied in three subsequent
temporal points (FP, MP, LP), equally spaced; specifically,
the work done to reduce the two attributes “fan-out” and
“instability” was measured between FP and MP, and be-
tween MP and LP. Results showed that the proportion of
functions that received complexity control work was con-
sistently greater in the case of Debian (apart from a single
SourceForgeproject that, interestingly, has now been intro-
duced into the unstable branch of the Debian project).

The two results as summarised here confirm the earlier
working hypothesis: FLOSS repositories act as exogenous
factors in the evolution of the projects they contain. In
fact, the greater effort and evolvability observed in Debian
projects [4] is mirrored by the amount of complexity con-
trol done at the architectural level, when comparing it with
SourceForge.

As future works, two main areas have been considered:
at first, this work will be extended by including more repos-
itories in the investigation. Specifically, more representa-
tives for each of the repository types identified in figure 2
will be will not only ascertain the architectural evolutionof
metaprojects, but could also lend more empirical weight to
the generalizability of the findings.

In addition, the findings of the hypothesis 2 will need to
be investigated further by decreasing the granularity of the
intervals in order to provide a more precise set of results.
A snapshot every month will be considered in order to give
more visibility to phases of maintenance and refactoring,
which could bias the results. When refactoring is followed
by another type of maintenance, the latter might increase
complexity again. The three intervals as above would be too
coarse, and produce different results depending on whether
the analysed point was before or after these activities.

7 Threats to Validity

• Construct validity The study has been able to make
use only of available data. It is possible, for example,
that the project initialization pre-dates the first mea-
surable piece of historical data and is therefore beyond
the reach of our analysis. Further to this point, the de-
velopment status assigned to a project requires human
judgement. Whilst in the Debian project this is a very
systematically prescribed process, the status assigned
to a SourceForge project is the result of the subjective
judgement of the administrator. There is therefore the
risk that some projects in the SourceForge sample are

not fairly considered “stable”.

• Internal validity The permissive nature of FLOSS de-
velopment means that it is possible, even encouraged,
for individual projects, or parts of them, to be included
in more than one repository. Hence, when randomly
sampling projects from individual repositories, it is
possible that a sampled project may be found in an-
other unknown location and that its evolution is also
influenced by this unknown repository. The assump-
tion is therefore made that any such confounding ef-
fect, if present, is negligible.

• Internal validity Because of the large amount of anal-
ysis necessary the evaluation of coupling was auto-
mated by analysis software, which is presently at a
level of sophistication that has the following conse-
quences: 1) Test suites, when included within the soft-
ware package, are included in the analysis and so con-
tribute to the perceived level of structuredness. It is
arguable whether or not test suites should be consid-
ered “part of the software”. For example, in the De-
bian sample, 14 out of 50 projects had a directory that
appeared to function as a test suite; 2) The level of cou-
pling is limited to being derived from a static view of
the software; hence, dynamic coupling is not detected.

• External validity Further to the previous point, the
large amounts of analysis and storage space required
meant that the investigation into hypothesis 2 required
a sub-sample to be taken rather than both samples in
its entirety. It is desireable for future work to explore
ways in which analysis can be made much more effi-
cient and so allow the analysis of a greater number of
projects.

References

[1] E. A. Audun Foyen and L. C. Briand. Dynamic coupling
measurement for object-oriented software.IEEE Trans.
Softw. Eng., 30(8):491–506, 2004.

[2] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of
object-oriented design metrics as quality indicators.IEEE
Transactions on Software Engineering, pages 751–761, Oc-
tober 1996.

[3] V. R. Basili, G. Caldiera, and D. H. Rombach. The goal
question metric approach. InEncyclopedia of Software En-
gineering, pages 528–532. John Wiley & Sons, 1994. See
also http://sdqweb.ipd.uka.de/wiki/GQM.

[4] K. Beecher, C. Boldyreff, A. Capiluppi, and S. Rank. Evo-
lutionary success of open source software: An investigation
into exogenous drivers.Electronic Communications of the
EASST, 8, 2008.

[5] K. Beecher, A. Capiluppi, and C. Boldyreff. Identifying
exogenous drivers and evolutionary stages in floss projects.
Journal of Systems and Software, 2009.



[6] L. C. Briand, J. W. Daly, and J. Wust. A united framework
for coupling measurement in object-oriented systems.IEEE
Transactions on Software Engineering, pages 91–121, Jan-
uary/February 1999.

[7] A. Capiluppi, C. Boldyreff, and K. Beecher. Quality factor
and coding standards – a comparison between open source
forges. InProceedings of the Second International Work-
shop on Software Quality and Maintainability, 2008. Co-
located with the 12th European Conference of Software
Maintenance and Reengineering.

[8] A. Capiluppi and J. Ferńandez-Ramil. Studying the evolu-
tion of open source systems at different levels of granularity:
Two case studies. InIWPSE ’04: Proceedings of the Prin-
ciples of Software Evolution, 7th International Workshop,
pages 113–118, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[9] A. Capiluppi and J. Ferńandez-Ramil. A model to predict
anti-regressive effort in open source software. In23rd IEEE
International Conference on Software Maintenance, pages
194–203. IEEE, 2007.

[10] A. Capiluppi and M. Michlmayr. From the cathedral to
the bazaar: An empirical study of the lifecycle of volunteer
community projects. In J. Feller, B. Fitzgerald, W. Scac-
chi, and A. Sillitti, editors,OSS, volume 234 ofIFIP, pages
31–44. Springer, 2007.

[11] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design.IEEE Transactions on Software En-
gineering, pages 476–493, June 1994.

[12] L. Constantine and E. Yourdon.Structured Design. Prentice-
Hall, 1979.

[13] S. D. Conte, H. E. Dunsmore, and Y. E. Shen.Software en-
gineering metrics and models. Benjamin-Cummings Pub-
lishing Co., Inc., Redwood City, CA, USA, 1986.

[14] P. Dalgaard.Introductory Statistics with R. Springer, 2002.
[15] A. Deshpande and D. Riehle. The total growth of open

source. In B. Russo, E. Damiani, S. A. Hissam, B. Lun-
dell, and G. Succi, editors,OSS, volume 275 ofIFIP, pages
197–209. Springer, 2008.

[16] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus. Does code decay? assessing the evidence from
change management data.IEEE Trans. Softw. Eng., 27(1):1–
12, 2001.

[17] R. English and C. Schweik. Identifying success and tragedy
of floss commons: A preliminary classification of source-
forge.net projects. InProceedings of the 1st International
Workshop on Emerging Trends in FLOSS Research and De-
velopment, Minneapolis, MN, 2007. ICSE.

[18] D. M. German. An empirical study of fine-grained software
modifications.Empirical Software Engineering, 11(3):369–
393, 2006.

[19] D. M. German and A. Hindle. Measuring fine-grained
change in software: Towards modification-aware change
metrics. InMETRICS ’05: Proceedings of the 11th IEEE
International Software Metrics Symposium, page 28, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[20] M. W. Godfrey and Q. Tu. Evolution in open source soft-
ware: A case study. InProceedings of the International Con-
ference on Software Maintenance, pages 131–142, 2000.

[21] I. Gorton and L. Zhu. Tool support for just-in-time ar-
chitecture reconstruction and evaluation: an experience re-
port. InProceedings of the 27th International Conference on
Software Engineering, pages 514–523, St. Louis, Missouri,
USA, 2005.

[22] I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles. To-
wards a theoretical model for software growth. InMSR ’07:
Proceedings of the Fourth International Workshop on Min-
ing Software Repositories, page 21, Washington, DC, USA,
2007. IEEE Computer Society.

[23] J. Howison and K. Crowston. The perils and pitfalls of min-
ing sourceforge. InProceedings of the international work-
shop on mining software repositories (msr 2004, pages 7–
11, 2004.

[24] S. Koch. Evolution of open source software systems – a
large-scale investigation. InProceedings of the First Int.
Conf. on Open Source Systems, pages 148–153, July 2005.

[25] M. M. Lehman. Programs, cities, students, limits to growth?
Programming Methodology, pages 42–62, 1978.

[26] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. Perry, and
W. M. Turski. Metrics and laws of software evolution - the
nineties view. InProceedings of the 4th International Sym-
posium on Software Metrics, pages 20–32, 1997.

[27] T. J. McCabe. A complexity measure.IEEE Transactions
on Software Engineering, pages 308–320, December 1976.

[28] T. Mens, J. Fernandez-Ramil, and S. Degrandsart. The evo-
lution of Eclipse. InProc. International Conference on Soft-
ware Maintance (ICSM), pages 386–395. IEEE Computer
Society Press, 2008.

[29] G. A. Miller. The magical number seven, plus or minus two:
Some limits on our capacity for processing information.The
Psychological Review, 63:81–97, 1956.

[30] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache and
mozilla. ACM Transactions of Software Engineering and
Methodology, pages 309–364, July 2002.

[31] M. Page-Jones.The Practical Guide to Structured Systems
Design. Yourdon Press, 1980.

[32] D. L. Parnas. Software aging. InICSE ’94: Proceedings
of the 16th international conference on Software engineer-
ing, pages 279–287, Los Alamitos, CA, USA, 1994. IEEE
Computer Society Press.

[33] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and I. Her-
raiz. Evolution and growth in large libre software projects.
In Eighth International Workshop on Principles of Software
Evolution, pages 165–174, 2005.

[34] G. Robles and J. M. Gonzalez-Barahona. Contribu-
tor turnover in libre software projects. In E. Damiani,
B. Fitzgerald, W. Scacchi, M. Scotto, and G. Succi, editors,
OSS, volume 203 ofIFIP, pages 273–286. Springer, 2006.

[35] F. G. Wilkie and B. A. Kitchenham. Coupling measures and
change ripples in C++ application software.Journal of Sys-
tems and Software, 52:157–164, 2000.



Debian SourceForge
Name Functions SLOCs Commits Name Functions SLOCs Commits

EtoileWildMenus 2 1,711 120 Beobachter 94 2,715 378
Pike 2,302 173,196 21,608 QPolymer 652 86,971 491
ProofGeneral 0 48,692 14,360 audiobookcutter 34 4,229 1,127
acpidump 53 2,349 36 blob 496 22,056 2377
apmud 45 2,502 74 cdlite 29 1,116 18
boson 9,246 224,567 33,216 clinkc 919 25,846 2501
cdparanoia 211 9,182 414 cotvnc 789 37,455 1,959
cherokee 1,221 54,229 5,341 cpia 109 22,954 386
clamav 1,056 116,731 11,691 critical care 1,051 38,994 1,710
dia 4,151 146,550 22,995 csUnit 96 16,241 2,149
enigmail 86 10,790 4,387 eas3pkg 69 43,724 310
flac 1,380 56,293 9,584 edict 0 2,556 84
fte 1,182 51,498 1,941 expreval 66 3,588 139
geomview 2,748 101,844 8,637 fitnesse 2,321 39,503 5,281
gosa 2,404 107,798 21,013 fn-javabot 279 10,142 1,732
grass6 1,650 107,648 2,941 formproc 134 3,514 1,340
grub 0 3,536 1,786 fourever 593 15,163 1,970
gwenview 128 4,580 558 freemind 1,579 28,519 11,109
jToolkit 0 4,156 251 fsdb 8,506 241,218 8,325
kmouth 99 5,240 13,954 galeon 3,525 93,374 29,760
kphoneSI 735 41,829 2,152 gvision 0 101,123 1,064
libax25 80 11,721 152 hge 800 45,654 1,185
liboil 730 52,996 3,798 icsDrone 33 1,411 153
libsoup 494 15,012 2,818 intermezzo 522 34,792 2,247
lirc 785 44,753 3699 jtrac 12,771 519 4,051
myphpmoney 153 19,434 2,298 juel 404 7,284 999
netpanzer 2,935 74,368 9681 kpictorial 18,214 21 341
noteedit 611 63,456 59 modaspdotnet 45 2,445 498
octave-forge 0 78,150 21,838 moses 4,053 105,955 5,172
openafs 10,807 618,553 50,176 neocrypt 21 2,135 110
openh323 6,392 234,285 9,352 ogce 13,960 350,490 19,058
peercast 818 22,543 1912 oliver 9 1,429 187
prcs1 663 37,360 918 ozone 3,920 63,790 6,110
preludemanager 304 10,854 3,398 perpojo 117 1,677 72
radiusd 1,330 95,967 19144 pf 84,489 213 3,209
rlplot 1,449 69,493 1674 qlc 890 26,452 1575
ruby 5,086 419,942 162,369 seagull 878 54,155 1,039
scid 1,179 89,402 676 simplexml 65 1,691 66
shorewall 0 25,159 19,275 source 162 8,786 692
slrn 1,189 42,993 1843 sudapix 15,747 234 331
sylpheed 2,859 106,087 12,359 swtjasperviewer 129 3,214 204
synce-kde 141 21,684 1,392 symbolica 67 2,623 250
tcl 2,205 165,306 42,237 tab-2 597 19,067 3202
tdb 133 3,942 296 txt2xml 61 1,345 157
tiobench 41 1,689 106 ustl 684 11,416 2,223
txt2html 0 3,623 131 whiteboard 202 4,910 51
vlc 6,250 401,256 65,098 wxactivex 37 3,264 61
wxWidgets 0 2,142,713 246,988 xmlnuke 1,623 57,944 1,877
xmakemol 315 18,724 1,380 xqilla 2,534 107,320 9,637
yaml4r 0 10,728 595 zmpp 1,063 15,502 3600

Table 6. Summary of SLOCs and Commits for the two samples



Figure 3. Boxplots of all measured attributes


