Wszystko co chcielibyście wiedzieć o bambusie, ale boicie się zapытаć

Zdjęcia bambusa
(źródło: „Give Your Own House”, Vitra Design Museum/ZER/C.I.R.E.C.A.)

Bez mięsa możemy żyć,
bez bambusa przygodę ram zgubić.

Skorumpowana przez żelbetowe lobby architektura współczesna zapomniała szybko o dawnych technologii.
Narzuca swoją energochłonną modę całemu światu. Bambus jest doskonałym przykładem materiału, który popadł we wstydlę nielęką nie z racjonalnych przyczyn, lecz ze względu na modę, która przysza z krajów bogatych i nieuzasadnione kompleksy architektów krajów biednych.

Materiał wytrwały
drzewa, gdy zacinamy łodygę bambusa, z każdego korzenia wyрастają następne łodygi. Wzrosłej rośliny jest niezwykle szybką. Niektóre gatunki w ciągu 2-3 miesięcy osiągają 20-30 metrów. Wydajność plantacji bambusa (liczona w ciągu 1-2 lat) może osiągać nawet 50 metrów. Dla jednokomórki rośliny można rozwijać go w liczbie od 20 do 44. Z działek o wymiarach 20 x 20 metrów w ciągu pięciu lat można uzyskać materiał dla dwóch domów. Dostosowańa książka wydana przez Vitra Design Museum, dotycząca architektury z bambusa została bardzo trafnie zatytułowana „Grow Your Own House” (Wyhoduj swój własny dom).

1001 drobiazgów...

...może i więcej, i wcale nie tak drobnych. David Farrell, autor książki „The Book of Bamboo” po-daje tysiąc zasobów bambusa: igły do akupunktury, cytryny, statki, struny, broń. Po trzeciu-
stu dniach zasadzenia pędy bambusa są doskonałe potrawą, po sześciu miesiącach nadają się na plecokę (na przykład dla mebli i koszycz-
ków), po trzech latach wiele gatunków nadają się jako materiał do budowy domu. Od wieków jednak bambus miał zastosowanie przede wszystkim w budownictwie... poczynając od podłóg, poprzez kolumny, meble, a nawet do chowów i kończąc na formy dziedzictwa. Dzisiejsze stosu-wane są jako rusztowania dla siedemdziesięciot-

W budownictwie bambus wykorzystuje się najczęściej jako materiał konstrukcyjny. W zależ-ności od tradycji, świąt, w których nosimy fili-rami sąłdy bambusa wypełniane są innym materiałem (kliną, matami z bambusa lub współczesnym materiałem izolacyjnym). Ponie-
wał wytrzymałość bambusa na rozciąganie jest większa niż na ściskanie, nadaje się też doskona-
łe do budowy kratownic. Wszystkie geometryczno-
ści modelu Fullera były właśnie wykonane z bambusa.

W tym programie gozdzie nie są potrzebne

Budowanie z tego materiału różni się od sposo-
bów budowania z drewna, które można przyczepić do odpowiednich wymiarów (tworząc przy tym odpady). Każda z bambusowych łodyg ma indywidualną wielkość i średnią, dlatego wymaga indywidualnego kształtowania. Zagadnięciem sa-
nym w sobie jest łączenie. Nie wchodzą tu w grę śruby ani gwoździe (które mogłyby rozszczepić materiał). Istnieje zamiast tego szereg technik łączenia, a niektóre z nich mają niezaprzeczalną estetyczny wartość. Rozwinięły się metody wiązania linami czy koksowymi wlokami oraz metody klejenia i spinania klamer. Niezwykle prosta w wykonaniu, a przy tym najścisłej opisana okazała się technika opracowana przez kolumbijskiego architekta Vélez-Vélez (można znaleźć szereg systemem Vélez). Wykonując połączenia tą metodą dwie ostatnie przegrody łodygi zalewane są beto-
nem, w który włożony jest gwintowany pręt. Pręt przechodząc przez dwa bambusy i skręcony śrubami daje łączenie wytrzymujące obciążenie do 14 ton.
zrobili to sami
Wiele z tradycyjnych łączeń nadaje się doskonale do demonstrowania. Na przykład w tak zwanym zło-
tnym zbliżeniu, pomiędzy Chińczykami, Birmanami i Tajlandź-
dą rozwinięła się kultura, której mieszkańcy przeci-
noszą się z miejsca na miejsce co 10-15 lat, z całym dożywotiem, poszukując nowych życiowych ziem. De-
montują oni wtedy swoje domostwa, transportują i montują ponownie w nowym miejscu.
Lekcja dla wielu projektantów, jak i chyba też socjologów, mogłoby być to, co wydarzyło się w Peru w 1959 roku w wigilijną noc. Setki tysię-
cy ludzi mieszkających w słumsach wokół stolicy Limy postanowiły zbudować dla siebie zupełnie nowe przedmieście, na pustym terenie w pewnej odległości od miasta, którego władze przyjęły tę inicjatywę bardzo niechętnie. Dlatego cała opera-
cja została przygotowana przez mieszkańców słumsów w Tajlandzki, niczym wojenne manew-
ry. Podzielił się na cztery grupy, z których każda miała być odpowiedzialna za jedną dzielnicę. Mieszkańcy sami narysowali sobie plany ulic i placów, szkół i kościołów. Wszyscy razem wyruszali 25 grudnia, każdy niośąc ze sobą po-
trzebny materiał. Dotarli do wyznaczonego miejsca o godzinie 10 w nocy, a już po dwóch godzinach tysiace tymczasowych domów stały postawionych zgodnie z narysowanymi plana-
mi; w każdej dzielnicy dodatkowo zbudowany został kościół. Gdy o północy władze dowiedzia-
ły się o całej akcji, wysłano policję, by powstrzy-
mać nielegalną budowę. Mimo to tysiące miesz-
kańców (spośród planowanych stu tysięcy) do dziś mieszka w Ciudad de Dios szesnaście kilo-
metrów od Limy.

bambus zdrowy — renesansowy
Bambus popadł w nielaską wraz z popularnością XX-wiecznej międzynarodowej architektury. W krajach o ciepłym klimacie, w którym ta roślin-
na jest powszechna, bambus zaczął być kojarzo-
ny z biedą i wstęgcińcem. Na renesans trzeba było czekać do rewolucji lat 60. Wtedy zaczęto po-
szukiwać korzeni, związów z tradycją i mówić o "architekturze bez architekta". Na Konferencji Klimatycznej w 1992 roku sformułowana została "Agenda 21" jako zbiór celów ekologicznych i właśnie bambus został tam przedstawiony jako dostrzegalny przykład zdrowego budulca i wzoru dla "przynajmniejowego rozwoju w architekturze". Obróbka bambusa i budowanie z niego prak-
tycznie nie pozostawia odpadów. Bólność roszczynności zastosowania powoduje, że to, co jest odpadem w jednym procesie, może być wykorzystane w innych. W krajach, gdzie bambus jest po-
wieszany rośnie on praktycznie przed drzwiami, co w kapitalny sposób minimalizuje transport. Porównyjmy te materiały pod względem ener-
gii, którą pochłania ich produkcja:
• beton — 240 mJ/m² (dodatkowym i nieba-
gatelnym problemem są zanieczyszczenia z cementowni i ciężki transport); • stal — 1500 mJ/m² (na „obronę” stali trzeba wspomnieć, że jest bardzo łatwa do recy-
klingu);
• drewno — 80 mJ/m² (wielkość przybliżona, ponieważ zależy głównie od transportu);
• bambus — 30 mJ/m² (obawa wykorzystania ziemi wskutek uprawy bambusa jest znacz-
nie mniejsza niż dla podobnych plantacji drzew wykorzystywanych do celów budow-
łanych).
Powszechnie też w wielu narodach i międzynarodó-
vych zrzeszenach promujących bambus jako materiał budowlany. Działają one zarówno w krajach, gdzie istnieją widoczne tradycje (jak Japonia czy Chiny), jak i tam gdzie potrzeba przystosować prawo budow-
lane do legalizacji bambusa jako równoprawn
nogo materiału: w Ameryce Północnej, na Ha-
wajach, w Holandii i w Europie Środkowej. Euro-
pejskie przykłady takie jak piwone ZERI na EXPO w Hanowerze stają się precedensami, które mają utworzyć drogę do powszechnego uznania tego niedocenianego budulca. Jednocześnie godne za-
stawienia jest fakt, że w wielu krajach, w któr-
ych bambus jest powszechny jak w śródka-
dowym architekturze, są też doskonali architekci z Trzeciego Świata, którzy coraz częściej sięgają po niego wzbogacając świadkową tradycję architektury.

Marcin Mateusz KOŁAKOWSKI
"Grow Your Own House", Vitra Design Museum/ZERI/J.I.E.C.A.

dom i studio w Rotterdamie, proj.: Ernst van Egmond, 1992
lith. „Grow Your Own House”, Vitra Design Museum/ZERI/J.I.E.C.A.