Motivation
- Traditional robotic mapping assumes that uncertainty originates from sensor noise and filters out conflicting measurements
- Instead of treating conflicting observations as outliers, we can use them to learn about the nature of environmental changes.
- Explicit modelling of the changes improves mobile robots’ ability to operate reliably for long periods of time [8,9].

Frequency Map Enhancement
- Can identify reoccurring patterns from long-term observations and use them to predict the future environment states.
- Based on non-uniform Fourier transform techniques.
- Applies to any environment model comprises of binary states.
- The uncertainty of a state is model as a probability in time:
 \[p(t) = p_0 + \sum_{j=1}^{N} p_j \cos(\omega_j t + \varphi_j) \]
 (1)
- The parameters of Equation (1) can be obtained from observations of the state \(s \) at times \(t_k \) by a non-uniform Fourier transform:
 \[S(\omega) = \sum (o(t_k) - p_0) e^{-j2\pi \omega t_k} \]
 (2)
- **Example:** week-long observation of an office door.

Introduction
- A novel method that introduces the notion of dynamics into traditional environment models meant for static scenes.
- Represents the probabilities of binary environment states by the most prominent components of their frequency spectra.
- Improves mapping [1], localization [2,3], planning [4,5] and allows spatio-temporal exploration [6,7] of changing environments.

FreMEn: Frequency Map Enhancement for Long-term Mobile Robot Autonomy in Changing Environments

Tomáš Krajník, Jaime Pulido Fentanes, João Santos, Keerthy Kasumam, Tom Duckett
\{jsantos, tkrajnik, jpuilidofentanes, kkasumam, tduckett\}@lincoln.ac.uk

FreMEn for visual localization
- Long-term observation of a feature’s visibility (centre) is transferred to spectral domain (left). The most prominent spectral components (left) are selected and transferred back to the time domain (center).
- This equation represents the probability of the feature’s visibility over time (centre, right), and can predict its appearance (right).
- This allows to obtain time-specific feature maps for visual topological localization, improving long-term autonomy.

References

Indoor experiments
- Training: A SCITOS-G5 robot captured 8000 images of 8 locations every 10 minutes for 7 days.
- Testing: 2 additional day-long datasets consisting of 1000 images were collected after 1 week and after 3 months.
- Captures changes caused by illumination and human activity.

Outdoor experiments
- Training: A P3AT mobile robot captured images of 5 locations every month over a period of one year.
- Testing: 3 additional data collection runs during the following year.
- Captures environment changes induced by seasonal factors.

Ongoing work
- Applying FreMEn to the BRIEF feature descriptor results in time-dependent image feature method.
- Preliminary experiments indicate improvements in robustness to seasonal changes.

The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement No. 600623, STRANDS.