Original article

A comparison of the malnutrition screening tools, MUST, MNA and bioelectrical impedance assessment in frail older hospital patients

Adrian Slee a,*, Deborah Birch b, David Stokoe c

a School of Life Sciences, Brayford Pool Campus, Lincoln, Lincolnshire LN6 7TS, UK
b Lincoln Hospital, ULHT, Lincoln, Lincolnshire LN2 5QY, UK
c St Barnabas Hospice, ULHT, Lincoln, Lincolnshire LN2 1HE, UK

A R T I C L E I N F O

Article history:
Received 2 October 2013
Accepted 22 April 2014

Keywords:
Malnutrition
Frailty
MUST
MNA
Bioelectrical impedance assessment

S U M M A R Y

Background & aims: This cohort study aimed to investigate and compare the ability to predict malnutrition in a group of frail older hospital patients in the United Kingdom using the nutritional risk screening tools, MUST (malnutrition universal screening tool), MNA-SF (mini nutritional assessment-short form) and bioelectrical impedance assessment (BIA) of body composition.

Methods: MUST and MNA-SF was performed on 78 patients (49 males and 29 females, age: 82 ± 7.9, body mass index (BMI): 25.5 ± 5.4), categorised by nutritional risk, and statistical comparison and test reliability performed. BIA was performed in 66 patients and fat free mass (FFM), fat mass (FM) and body cell mass (BCM) and index values (kg/m²) calculated and compared against reference values.

Results: MUST scored 77% patients ‘low risk’, 9% ‘medium risk’ and 14% ‘high risk’, compared to MNA-SF categorisation: 9%, 46% and 45%, respectively (P < 0.000001). Reliability assessment found poor reliability between the screening tools (coefficient, r = 0.4). Significant positive correlations were found between most variables (P < 0.05–<0.001); although females exhibited greater variation. FFM index analysis found 40% of males low/depleted, 21% borderline/at risk with 96% categorised by MNA-SF as either malnourished or at risk (MUST-35%). 29% males had low FM index and all appropriately classified by MNA-SF. 30% females had low FFM index or borderline, MNA-SF screening appropriately categorised 86% (compared to MUST-29%).

Conclusions: This preliminary data may have significant clinical implications and highlights the potential ability of the MNA-SF and BIA to accurately assess malnutrition risk over MUST in frail older hospital patients.

© 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

1. Introduction/background

Malnutrition is a serious condition associated with increased morbidity and mortality and is particularly relevant in older people [1–3]. Older people may be at increased risk due to physiological alterations in body composition during ageing (e.g. the loss of skeletal muscle mass, ‘sarcopenia’, and associated muscle protein), and reduction in appetite (e.g. ‘the anorexia of ageing’) [4–7]. In addition, complexity is added with the occurrence of acute and chronic disease and pathological frailty syndrome producing concurrent and overlapping symptoms of cachexia, sarcopenia and undernutrition [8–11].

Specific guidelines to screen for malnutrition/nutritional risk have been developed by ESPEN [12] and, currently, in the United Kingdom (UK) the malnutrition universal screening tool (MUST), endorsed by BAPEN, is utilised in all hospitals and care homes [13]. MUST formulates a risk of malnutrition score based upon current body mass index (BMI), known weight loss and the presence of acute disease/no nutritional intake for 5 days [12,13]. This score partially forms the basis upon which clinical and dietetic decisions are formulated. The mini-nutritional assessment (MNA), designed specifically and validated for older people, has a full version of 18 questions and a short-form screening version (MNA-SF) of 6 questions [12,14–16]. The MNA-SF has similar questions to the MUST with additional questions on neuropsychological functional status, physical mobility and food intake. Scoring works in the opposite direction to the MUST with a lower score indicating a higher risk of malnutrition. The BMI classifications for the MUST are principally based upon the World Health Organisation (WHO) BMI classifications with normal at >20 kg/m² (score-0), ‘at risk’ 18.5–20...
Clinical staff. In some cases height had to be estimated, e.g. height
3.2. Anthropometric measurements
(50 kHz) Maltron
3.3. Bioelectrical impedance measurements
according to instructions and scores recorded. Scores were con-
frail older patients. Full ethical approval was obtained prior to study
coefficient value attained. Parallel-forms reliability analysis was per-
3.4. Data analysis
Data is presented as mean average measurements ± SD with a
range (minimum—maximum) and [median] values. Data is grouped
into whole participant group, males and females, and where rele-
vant into nutritional screening categories. Statistical analysis was
performed using IBM SPSS Statistics, version 19, New York, USA. T-
tests and Pearson correlations were used for normally distributed
data and Mann-Whitney-U and Spearman correlations test for
nonparametric data. McNemar pair comparison of malnutrition risk
categorisation was performed on the 78 and 66 patient groups
using a 2 × 2 contingency table, after categorising patients by low
risk/normal, and combining medium risk/at risk and high risk/
malnourished groups (see Appendices, Suppl. Table 2A and B).
Marginal proportions, frequencies were determined and signifi-
cance value attained. Parallel-forms reliability analysis was per-
formed to compare the MUST and MNA-SF scores and a reliability
coefficient value (r) attained. Categorical differences between male
and female groups were analysed using Chi-squared and Fishers
Exact testing. A P value of <0.05 was considered statistically
significant.
4. Results
4.1. Participants
The study group comprised of 78 participants in total (49 males
and 29 females), predominantly Caucasian (all except two males),
with a mean age of 82 years ± SD 7.9 (age range: 62–96) (Table 1A).
Due to the presence of a cardiac pacemaker nine patients were
ineligible for BIA testing (69 remaining in total, 44 males and 25
females). Three participants (two male and one female) were
further excluded from presentation of results as they had known
hydration abnormalities and led to signifi-
cant. Statistical analysis was performed using the equation by Kyle et al. [22].
(see Appendices) Other estimations of FFM were also calculated and
compared, including the BIA manufacturer (Maltron); but the Kyle
equation was utilised for full data presentation based upon scatter-
plots of participant data against BMI and the general scientific
consensus of the robust accuracy of equation. FM (kg) was calcu-
lated by subtraction of FFM from total body weight (kg). The BCM
(kg) was calculated using the Maltron (manufacturers) equation.
FFM, FM and BCM indices (kg/m²) were calculated for all partici-
pants (FFMI, FMI and BCM1) and compared against reference data
values from sources [20–22].
2.2. MUST tool and MNA-SF screening
MUST and MNA-SF screening was undertaken by clinical staff
according to instructions and scores recorded. Scores were con-
verted into categories for nutritional status using MUST and MNA-
SF scoring criteria either ‘low risk’/normal’[0 points–MUST, 12–14
MNA-SF], ‘medium risk/at risk’ (1 point–MUST, 8–11 MNA-SF) and
‘high risk’/malnourished’ (>2 points–MUST, 0–7 MNA-SF).
3.3. Bioelectrical impedance measurements
BIA measurements were taken using a single-frequency
(50 kHz) Maltron® 916S, bioelectrical impedance analyser
(Maltron International Ltd., Rayleigh, Essex, UK) using a standard
hand-to-foot tetra-polar technique with participants in the supine
position. Raw impedance measurements of resistance, R and
capacitance, xC in ohms were recorded at 50 kHz frequency. FFM
(kg) was calculated using the equation by Kyle et al. [19].
(1) and ‘high risk’/malnourished’ <18.5 (2), whereas for the MNA it
is has a graded classification with <19 (score-0), 19–21 (1), 21–23
(2) and >23 (3).
Bioelectrical impedance assessment (BIA) is a practical means of
assessing body composition and nutritional status using body
impedance data [17,18]. Specific prediction equations for estimating body
compartments of interest (e.g. fat mass (FM) and fat free mass
(FFM)) have been developed and validated using gold standard
techniques such as dual-energy X-ray absorptiometry (DXA) for
specific healthy population groups, and BIA analyser manufacturers
have also developed their own equations [17]. Other relevant body
compartments of interest in relation to nutritional status include
the body cell mass (BCM) component which is FFM minus extra-
cellular water fluid (ECW). Further, specific indices (normalised for
height, i.e. kg/m²) of FM, FFM and BCM can be compared to refer-
ence ranges similar to the BMI. One issue of concern however, is
that the BIA predictive equations may cause significant errors in
older people and in pathological clinical states [17,18]; and that use
of raw impedance data (i.e. the BIA vector method by Piccoli and
Pastori) may have greater accuracy [18].
No studies were discovered comparing the utility of MUST,
MNA–SF and BIA in frail older hospital patients. Therefore, the aims of
this preliminary study were to assess the relative ability of the
MUST and MNA-SF to predict malnutrition in frail older hospital
inpatients; and to compare use of BIA as an additional method of
assessing nutritional status.
2. Methods
2.1. Participants and study design
This cohort study was undertaken between September 2012 and
May 2013 and recruits were from a purposive sampling from ad-
missions to two hospital wards in Lincoln, UK specialising in care of
frail older patients. Full ethical approval was obtained prior to study
commencement, ethical guidelines followed and informed consent
sought from all patients. Exclusion criteria from the study were:
patients unable or unwilling to give informed consent, nil by mouth
requests from two hospital wards in Lincoln, UK specialising in care of
frail older patients. Full ethical approval was obtained prior to study
commencement, ethical guidelines followed and informed consent
sought from all patients. Exclusion criteria from the study were:
patients unable or unwilling to give informed consent, nil by mouth
or tube fed. BIA measures were contraindicated in patients with
defibrillation or cardiac pacemaker devices. The aim was to recruit
100—150 patients in—line with other similar studies; however the
exclusion criterion of ability to consent and designated study time
restraints dictated the current number.
3. Nutritional assessment
3.1. MUST tool and MNA-SF® screening
MUST and MNA-SF® screening was undertaken by clinical staff
according to instructions and scores recorded. Scores were con-
verted into categories for nutritional status using MUST and MNA-
SF® scoring criteria either ‘low risk’/normal’[0 points–MUST, 12–14
MNA-SF], ‘medium risk/at risk’ (1 point–MUST, 8–11 MNA-SF) and
‘high risk’/malnourished’ (>2 points–MUST, 0–7 MNA-SF).
3.2. Anthropometric measurements
Height (m) and weight (kg) measurements were completed by
clinical staff. In some cases height had to be estimated, e.g. height
from demi-span. BMI was then calculated in kg/m².
3.3. Bioelectrical impedance measurements
BIA measurements were taken using a single-frequency
(50 kHz) Maltron® 916S, bioelectrical impedance analyser
Please cite this article in press as: Slee A, et al., A comparison of the malnutrition screening tools, MUST, MNA and bioelectrical impedance
Table 1A
Study participant characteristics mean values presented ± SD, range (minimum–maximum) and [median] for the entire group, males and females. MUST and MNA-SF categorisation is also included with number and percentage of patients.

<table>
<thead>
<tr>
<th>Group</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants, n</td>
<td>78</td>
<td>49</td>
</tr>
<tr>
<td>Age, years</td>
<td>82.0 ± 7.9 (62–96) [83]</td>
<td>80.7 ± 7.8 (62–92) [82]</td>
</tr>
<tr>
<td>Height, m</td>
<td>1.68 ± 0.10 (1.37–1.85) [1.68]</td>
<td>1.72 ± 0.07 (1.57–1.85) [1.74]</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>72.2 ± 15.9 (38.9–101.6) [71.0]</td>
<td>73.7 ± 15.8 (42.8–101.0) [72.3]</td>
</tr>
<tr>
<td>Body mass</td>
<td>25.5 ± 5.4 (16.4–45.1) [24.9]</td>
<td>24.6 ± 4.9 (16.6–35.2) [24.3]</td>
</tr>
<tr>
<td>MUST – Low risk</td>
<td>60 (77%)</td>
<td>36 (74%)</td>
</tr>
<tr>
<td>MUST – Medium risk</td>
<td>7 (9%)</td>
<td>4 (8%)</td>
</tr>
<tr>
<td>MUST – High risk</td>
<td>11 (14%)</td>
<td>9 (18%)</td>
</tr>
<tr>
<td>MNA-SF Score</td>
<td>8.0 ± 2.8 (2–14) [8]</td>
<td>7.8 ± 2.7 (2–14) [8]</td>
</tr>
<tr>
<td>MUST – ‘Normal’</td>
<td>7 (9%)</td>
<td>3 (6%)</td>
</tr>
<tr>
<td>MUST – ‘At risk’</td>
<td>35 (45%)</td>
<td>24 (49%)</td>
</tr>
<tr>
<td>MUST – ‘Malnourished’</td>
<td>36 (46%)</td>
<td>22 (45%)</td>
</tr>
</tbody>
</table>

*Significantly different compared to female group (P < 0.05); ** (P < 0.01); *** (P < 0.001).

Table 1B
Study participant characteristics with bioelectrical impedance assessment data. Mean values presented ± SD, range (minimum–maximum) and [median] for the entire group, males and females.

<table>
<thead>
<tr>
<th>Group</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants, n</td>
<td>66</td>
<td>42</td>
</tr>
<tr>
<td>Age, years</td>
<td>82.1 ± 7.5 (62–96) [83]</td>
<td>81.5 ± 7.3 (62–92) [82]</td>
</tr>
<tr>
<td>Height, m</td>
<td>1.68 ± 0.10 (1.37–1.85) [1.68]</td>
<td>1.72 ± 0.07 (1.57–1.85) [1.73]</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>73.4 ± 14.8 (42.8–101.6) [71.5]</td>
<td>73.5 ± 15.0 (42.8–101) [73.5]</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>26.0 ± 5.4 (16.6–45.1) [25.8]</td>
<td>24.7 ± 4.7 (16.6–35.2) [24.4]</td>
</tr>
<tr>
<td>MNA-SF score</td>
<td>8.1 ± 2.8 (2–14) [8]</td>
<td>7.8 ± 2.8 (2–14) [8]</td>
</tr>
<tr>
<td>Fat free mass, kg</td>
<td>50.0 ± 9.3 (31.7–72.7) [50.5]</td>
<td>53.4 ± 8.8 (37.5–72.7) [52.3]</td>
</tr>
<tr>
<td>Fat free mass index, kg/m²</td>
<td>17.62 ± 2.46 (13.22–23.49) [17.73]</td>
<td>17.95 ± 2.26 (13.26–23.10) [17.86]</td>
</tr>
<tr>
<td>Fat mass, kg</td>
<td>23.5 ± 11.0 (3.1–50.6) [21.1]</td>
<td>20.1 ± 9.9 (3.1–42.5) [18.9]</td>
</tr>
<tr>
<td>Fat mass index, kg/m²</td>
<td>8.5 ± 4.3 (1.1–22.5) [7.6]</td>
<td>6.8 ± 3.4 (1.1–14.0) [6.4]</td>
</tr>
<tr>
<td>Body cell mass, kg</td>
<td>26.6 ± 5.2 (17.0–37.5) [26.3]</td>
<td>28.1 ± 5.6 (17.0–37.5) [29.0]</td>
</tr>
<tr>
<td>Body cell mass index, kg/m²</td>
<td>9.4 ± 1.5 (6.3–13.0) [9.4]</td>
<td>9.5 ± 1.7 (6.3–13.0) [9.5]</td>
</tr>
</tbody>
</table>

*Significantly different compared to female group (P < 0.05); ** (P < 0.01); *** (P < 0.001).

for the entire 78 patient group (P = <0.000001) and the 66 BIA (P = <0.000001). Furthermore, parallel forms reliability analysis indicated a high degree of variance between the two scales and the reliability correlation coefficient was 0.4 (i.e. >0.90 excellent, 0.80–0.89 good and 0.70–0.79 adequate etc.). Note: there were no significant differences in MUST and MNA scoring categorisation between males and females for the 78 and 66 patient groups.

4.3. Body weight and body mass index

Mean and ranges of body weight and BMI of patients can be seen in Table 1. The spread of male and female BMI and MNA-SF scores can be seen in Fig. 2. Correlations of body weight and MNA-SF score were; group (r = 0.42, P < 0.001), males (r = 0.46, P < 0.001) and females (r = 0.36, P = 0.057), with lower weight correlating with a lower MNA-SF score. Correlations of BMI and MNA-SF score were; group (r = 0.52, P < 0.001), males (r = 0.51, P < 0.001), and females (r = 0.40, P < 0.05).

4.4. Fat free mass and fat free mass index

FFM and FFMI for all 66 participants can be seen in Table 1B. Correlations of FFMI and BMI were; group (r = 0.614, P < 0.0001), males (r = 0.787, P < 0.0001), and females (r = 0.568, P < 0.04), see Fig. 1. Relative frequencies of nutritional risk categorisation of patients in percentages (%). N.B. Low risk categorisation also equates to ‘normal’ by MNA-SF and high risk as ‘malnourished’; and at risk as ‘medium risk’ by MUST.

Please cite this article in press as: See A, et al., A comparison of the malnutrition screening tools, MUST, MNA and bioelectrical impedance assessment in frail older hospital patients, Clinical Nutrition (2014), http://dx.doi.org/10.1016/j.clnu.2014.04.013
Fig. 3A. Correlations of FFMI and MNA-SF score were; group ($r = 0.284, P = 0.022$), males ($r = 0.417, P = 0.006$), and females ($r = 0.98, P = 0.648$), see Fig. 3B.

FFMI values were then compared against reference data from Schutz et al. [20], and Coin et al. [21], and 5th–10th percentile region used to detect low FFMI and then up to ~25th for ‘borderline/at risk’ FFMI in patients; and corresponding count of matches for ‘high risk’/‘malnourished’ and ‘at risk’ nutritional screening categories by MUST and MNA-SF calculated (Table 2). Analysis of FFMI categories for the male and female groups (using a 2 x 2 table format with normal FFMI and low/borderline FFMI), found significant differences in categorisation whereby males have higher prevalence of low/lower FFMI grouping compared to females ($P < 0.05$).

4.5. Fat mass and fat mass index

FM and FMI for all 66 participants can be seen in Table 1B. Correlations of FMI and BMI were; group ($r = 0.614, P < 0.0001$), males ($r = 0.787, P < 0.0001$), and females ($r = 0.91, P < 0.0001$), see Fig. 3C. Correlations of FMI and MNA-SF score were; group ($r = 0.422, P = 0.0004$), males ($r = 0.441, P = 0.003$), and females ($r = 0.332, P = 0.113$), see Fig. 3D. Using ~10th percentile for FMI from Schutz et al. (<4.5 kg/m²); 12 males (12/42 = 29%) had low/
depleted FMI. All 12 were classified by MNA as either ‘high risk’/‘malnourished’ (11/12, 92%) or ‘at risk’ (1/12, 8%). 6/12 (50%) were classified as ‘high risk’ by MUST and 1/12 (8%) ‘at risk’. No females were categorised as having low/very low FMI.

4.6. Body cell mass and body cell mass index

BCM and BCMI for all 66 participants can be seen in Table 1B. Correlations of BCMI and BMI were: group (r = 0.861, P < 0.0001), males (r = 0.945, P < 0.0001), and females (r = 0.895, P < 0.0001). Correlations of BCMI and FFMI were: group (r = 0.579, P < 0.0001), males (r = 0.85, P < 0.0001), and females (r = 0.567, P < 0.004), see Supplementary Fig. 1 in Appendices. Correlations of BCMI and MNA-SF score were: group (r = 0.46, P = 0.0001), males (r = 0.483, P = 0.01), and females (r = 0.345, P = 0.99).

5. Discussion

This study investigated the use of the nutritional screening tools MUST and MNA-SF in a group of frail older hospital patients and showed clear significant differences in the group categorisation of malnutrition risk by the two tools (P < 0.000001). The MUST consistently scored patients within a low risk category whereas the MNA-SF scored most within ‘at risk’ and ‘malnourished’/high risk categories (Table 1, Fig. 1). Parallel-forms reliability analysis found a poor match and reliability between the two tests. This is an issue that requires further investigation as nutritional risk categorisation has a significant impact on future clinical decisions regarding diet and nutrition in older patients on hospital wards. Recent studies showing similar MUST-MNA scoring patterns include in geriatric outpatients from the Netherlands [23], and a study in a UK care home [24].

Specific reasoning for the differences in categorisation could be due to the following factors: It is recognised that weight loss in frail older people as they are admitted to a hospital ward can be practically difficult to assess—especially if the person is confused and/or has other pathological neuropsychological problems. In comparison to the MUST, the MNA has a graded scale and point category based upon weight loss e.g. it has a ‘not known’ category. In addition, the MNA also subjectively questions food intake over the past 3 month period, whereas the MUST requires specifically a combination of ‘presence of acute disease and no nutritional Intake for 5 days’.

The MNA also uses a higher grading scale for BMI compared to the MUST (which conforms to WHO guidelines, i.e. <18.5 kg/m² is underweight and 18.5–20 kg/m², ‘at risk’). The BMI of the participants in this study (Tables 1A and B) were predominantly within the normal and overweight ranges.

There were correlations of body weight and BMI with MNA-SF score and the spread and relationship can be viewed clearly in Fig. 2, with a high proportion of patients being categorised as malnourished or ‘at risk’. This is an important finding as current research has indicated consistently that older people with higher BMI scores (including overweight and obese) have lower morbidity and mortality rates compared to those with lower BMI ranges, indicating a potential ‘body mass index/obesity paradox’ [25–29]. Beck and Ovesen [29], argued that the cut-off points for indicating nutritional risk in the elderly should be 24 kg/m² and a healthy BMI range should be raised from 20 to 25 to 24–29 kg/m².

The BIA readings for fat free mass index (FFMI), fat mass index (BMI) and body cell mass index (BCM) showed significant correlations with BMI and MNA-SF scoring for all male and group correlations; however, for the female group there were similar significant correlations with BMI but not with MNA-SF.

Using reference percentiles for FFMI from Schutz et al. [20], and Coin et al. [21]. FFMI = 5th–10th percentile reference range using both reference data sets for low FFMI/malnourished and ≥25th percentile for ‘at risk’.

Table 2

<table>
<thead>
<tr>
<th>Number of patients</th>
<th>Low FFMI (<17 kg/m²)</th>
<th>Borderline/at risk (17–18.5 kg/m²)</th>
<th>Normal (>18.3 kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males (n = 42)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17/42 (40%)</td>
<td>8/9 (89%)</td>
<td>14/16 (87.5%)</td>
<td>2/3 (66%)</td>
</tr>
<tr>
<td>9/42 (21%)</td>
<td>1/9 (11%)</td>
<td>1/16 (6.25%)</td>
<td>3/4 (75%)</td>
</tr>
<tr>
<td>16/42 (38%)</td>
<td></td>
<td>1/16 (6.25%)</td>
<td>4/24 (17%)</td>
</tr>
<tr>
<td>Females (n = 24)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/24 (13%)</td>
<td>2/3 (66%)</td>
<td>3/4 (75%)</td>
<td>7/24 (100%)</td>
</tr>
<tr>
<td>4/24 (17%)</td>
<td></td>
<td>1/16 (6.25%)</td>
<td>11/17 (64.5%)</td>
</tr>
</tbody>
</table>

* Using reference data for FFMI from Schutz et al. [20], and Coin et al. [21]. FFMI = 5th–10th percentile reference range using both reference data sets for low FFMI/malnourished and ≥25th percentile for ‘at risk’.

A. Slee et al. / Clinical Nutrition xxx (2014) 1–6

Please cite this article in press as: Slee A, et al., A comparison of the malnutrition screening tools, MUST, MNA and bioelectrical impedance assessment in frail older hospital patients, Clinical Nutrition (2014), http://dx.doi.org/10.1016/j.clnu.2014.04.013