University of Huddersfield Repository

Konstantinos, Michail, Zolotas, A.C. and Goodall, Roger M.

Simulation-Based Optimum Sensor Selection Design for an Uncertain EMS System Via Monte-Carlo Technique

Original Citation

This version is available at http://eprints.hud.ac.uk/17749/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Simulation-based Optimum Sensor Selection Design for an Uncertain EMS System via Monte-Carlo Technique.

Konstantinos Michail*
Argyrios C. Zolotas, Roger M. Goodall**

* Energy, Environment and Water Research Center, The Cyprus Institute, Nicosia, Cyprus (e-mail: kon_michael@ieee.org)
** Control Systems Group, Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, UK (e-mail: {a.c.zolotas, r.m.goodall}@lboro.ac.uk)

Abstract: Optimum sensor selection in control system design is often a non-trivial task to do. This paper presents a systematic design framework for selecting the sensors in an optimum manner that simultaneously satisfies complex system performance requirements such as optimum performance and robustness to structured uncertainties. The framework combines modern control design methods, Monte Carlo techniques and genetic algorithms. Without losing generality its efficacy is tested on an electromagnetic suspension system via appropriate realistic simulations.

Keywords: optimum sensor selection, modern control design, EMS systems, Monte Carlo, genetic algorithms

1. INTRODUCTION

Selecting the output measurements for controlling a system in an optimum manner is not a trivial task to do especially if many candidate sensor sets exist. The complexity, the often conflicting closed-loop objectives, the constraints and other control properties like optimum performance, robust performance and sensor fault tolerance make the problem even more complicated. Although the research community has considered the sensor selection before [Wal and Jager 2001] no systematic framework has been developed as flexible as the one presented in this paper able to handle many different conflicting closed-loop performance objectives subject to optimum sensor set selection. The novel sensor framework that is presented by the authors actually simplifies the sensor selection while ensuring the desired closed-loop response, optimum performance and robustness to structure uncertainties. The proposed sensor framework is very flexible and has been tested using various control strategies with many extensions developed by Michail [2009]. In this work, the framework is extended towards optimum sensor selection with robust performance and stability for an uncertain system. The key point of the approach is by incorporating Monte Carlo (MC) methods (see Roberto et al. [2004]) with the constraint handling techniques (that are used in Genetic Algorithms (GA)). This idea has been roughly discussed before by the authors [Michail et al. 2008] but here a comprehensive description of the method is done along with appropriate simulations.

The proposed systematic framework combines the \mathcal{H}_∞ Loop Shaping Design Procedure (LSDP) [McFarlane and Glover 1992], the GAs [Konak et al. 2006] and MC method for robustness assessment.

The Electro-Magnetic Suspension (EMS) systems are being used on the MAGnetic LEVitated trains [Lee et al. 2006]. As indicated by Goodall [2008] the EMS system is a non-linear, inherently unstable system with non-trial requirements and it can easily serve as a good example for testing the efficacy of the proposed framework.

This paper is separated into five sections: Section 2 describes the EMS model and the closed-loop requirements of the EMS. In Section 3 the details of the framework are given. Section 4 discusses the simulation results and the efficacy of the proposed framework is assessed. The paper concludes by summarizing the advantages in Section 5.

2. EMS MODELLING AND REQUIREMENTS

2.1 The EMS Model

The single degree-of-freedom model represents the quarter of a typical MAGLEV vehicle and is analysed here. As shown by Goodall [2004] a single-stage electro-magnetic suspension is suitable for low speed vehicles. The basic quarter car diagram of the MAGLEV vehicle is shown in Fig. 1. The suspension consists of an electromagnet with a ferromagnetic core and a coil of N_c turns which is attracted to the rail that is made of ferromagnetic material. The carriage mass (M_s) is attached on the electromagnet, with z_t the rail’s position and z the electromagnet’s position. The airgap $(z_t - z)$ is to be controlled so as to vary around the nominal operating condition. There are four important variables in an electromagnet named as force F,
The output matrix, C gives the five measurements (i.e. $i,b, (z_t - z), \dot{z}$ and \ddot{z}) and the sensor sets can be obtained by using the corresponding rows of C in (11). The total number of sensor sets is $N_s = 2^{15} - 1$, where n_s is the total number of sensors. Given that the EMS system has 5 outputs there are 31 candidate sensor sets. However, since the LSDP controller design technique is used here and therefore the airgap measurement is a standard measurement, the number of candidate sensor sets reduces to 15. The electromagnet design of MAGLEV vehicles is described in more details by Goodall [Sep 1985]. A typical quarter car vehicle of 1000kg requires an operating force of $F_v = M_x \times g$. The operating airgap (G_o) is at 15mm to accommodate the track roughness. According to these requirements the rest of the parameters can be calculated and they are listed on Table 1.

The EMS system is inherently unstable system and is also characterised by uncertainties that can be caused from various reasons. Table 1 tabulates the uncertainties that could possibly occur.

Table 1. Parameters of the EMS system.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G_o</td>
<td>0.015m</td>
<td>10%</td>
<td>M_x</td>
<td>1000kg</td>
<td>10%</td>
</tr>
<tr>
<td>B_o</td>
<td>1T</td>
<td>10%</td>
<td>R_c</td>
<td>1Ω</td>
<td>50%</td>
</tr>
<tr>
<td>I_o</td>
<td>10A</td>
<td>10%</td>
<td>L_c</td>
<td>0.1H</td>
<td>50%</td>
</tr>
<tr>
<td>V_o</td>
<td>100V</td>
<td>0%</td>
<td>N_c</td>
<td>2000</td>
<td>0%</td>
</tr>
<tr>
<td>F_v</td>
<td>9810N</td>
<td>10%</td>
<td>A_p</td>
<td>0.01m2</td>
<td>0%</td>
</tr>
</tbody>
</table>

Note: Par. - Parameter, Val. - Value, Unc. - Uncertainty

2.2 Design Requirements and Inputs to the EMS

Stochastic Inputs The stochastic inputs are random variations of the rail position as the vehicle moves along the track. This is caused by the steel rail installation discrepancies due to track-laying inaccuracies and unevenness. Considering the vertical direction, the velocity variations can be approximated by a double-sided power spectrum density (PSD) expressed as

$$ S_v = \pi A_v V_o $$

where V_o is the vehicle speed (taken as 15m/s in this case) and A_v represents the roughness which is assigned a value as 1×10^{-7}m corresponding to high quality track. Then the corresponding autocorrelation function is given as:

$$ R(\tau) = 2\pi^2 A_v V_o \delta(\tau) $$

Although a linear controller is used, the simulations are actually based on the implementation to the nonlinear model. Hence, we calculate the RMS values of the required...
quantities (acceleration, current etc) using time history data.

Deterministic Input The main deterministic input to the suspension in the vertical direction is due to the transition onto a gradient. In this work, the deterministic input (see Fig. 2) is a gradient of 5% at a vehicle speed of 15m/s, an acceleration of 0.5m/s² and a jerk of 1m/s³.

![Deterministic input to the suspension with a vehicle speed of 15ms⁻¹ and 5% gradient.](image)

EMS Control Properties The design requirements for an EMS system depend on the type and speed of the train. Therefore, they are well described in Goodall [1994, 2004]. His work is focused on the low speed Birmingham Airport Maglev vehicle EMS suspension requirements which operated successfully in the UK for a period of 12 years in the 1980s and 1990s. Fundamentally, there is a trade-off between the deterministic and stochastic responses of the EMS system. Table 2 tabulates the design limitations for the deterministic and stochastic features. The deterministic features are limited to the maximum standard values and the stochastic ones are set as objectives to be minimized i.e. the vertical acceleration \ddot{z}_{rms} (improve ride quality) and the RMS current variations \dot{r}_{rms} from the stochastic response.

The robust stability margin (degree of robustness) ϕ calculated from the LSDP is maximized for maximum robustness to uncertainties (note that $\gamma = 1/\epsilon$). Since noise affects the sensors, an amount of this noise will appear on the control effort $u_{n_{rms}}$ [Michail et al. 2009]. In that case the noise, if not eliminated, can be amplified from the controller hence its being set as an objective to be minimized.

Summarizing, the objective functions ϕ_i to be minimized are formally written as:

$$\phi_1 = i_{rms}, \phi_2 = \gamma, \phi_3 = \ddot{z}_{rms}, \phi_4 = u_{n_{rms}}. \quad (14)$$

3. THE SENSOR OPTIMISATION FRAMEWORK

The proposed framework can be summarised in the flow chart of Fig. 3. The particular points include the use of \mathcal{H}_∞ loop-shaping design and the heuristic optimisation (evolutionary algorithms) method for tuning the controller subject to strict requirements (objectives and constraints) for each feasible sensor set of the EMS system.

Prior to running the algorithm (initialization phase), some parameters are assigned including evolutionary algorithms parameters, controller selection criteria (f_e) and the user's controller selection criterion (f_u) which make sure that the selected controller results in a desired closed-loop performance. Starting the optimisation procedure, the first sensor set is selected and the evolutionary algorithm seeks the Pareto-optimality of the objective functions in (14) (i.e. the trade-off between them) subject to the constraints listed on Table 2.

In the sequence, the algorithm seeks to find the optimised controller by using the overall constraint violation function Ω (see (17) in Section 3.2). At this point there are two paths to follow:

(i) If there is no sufficient controller (this can be easily verified by checking Ω for each individual response) then the controller which gives the minimum Ω is selected and saved.

(ii) Those controllers satisfying Ω are selected. The next
step is to select those controllers that satisfy the controller selection criteria \(f_\epsilon \) and finally, the user’s controller selection criteria, \(f_k \), is used to select the controller which results in the desired closed-loop response. If no controller exists to satisfy \(f_\epsilon \), then the algorithm directly selects a controller based only on \(f_k \). The optimally tuned controller is saved and the algorithm moves to the next stage where robustness is assessed via MC method.

The particular sensor set and the selected controller provide a nominal performance that is assessed for parametric uncertainties by combining the MC method with the overall constraint violation function in the following way:

(i) For every \(q^{th} \) of the uncertain EMS system do: calculate the overall constraint violation function \((\Omega)\) using simulation results from the closed-loop response of the deterministic and stochastic profiles of the track.

(ii) From the closed-loop responses of the \(Q \) samples select the one with the maximum value of the overall constraint violation function. This is taken as the worst case overall constraint violation function noted as \((\Omega_{w-c})\). In case the closed-loop response with an uncertain model is unstable, \(\Omega_{w-c} \) is quantified by infinity.

In this way the robustness of the optimally tuned nominal controller is assessed. Finally, the algorithm moves to the next feasible sensor set until all feasible sensor sets are checked as described above.

3.1 \(H_\infty \) loop-shaping design

The design of the optimised controller is based on the normalised coprime-factor plant description, proposed by McFarlane and Glover [1992], which incorporates the simple performance/robustness tradeoff obtained in loop shaping, with the normalised left coprime factorization robust stabilization method as a means of guaranteeing closed-loop stability.

The design method proceeds by shaping the open-loop characteristics of the plant by means of the weighting functions \(W_1 \) and \(W_2 \) (see Fig. 4(a)). The plant is temporarily redefined as \(G(s) = W_2GW_1 \) and the \(H_\infty \) optimal controller \(\hat{K}(s) \) is calculated. In the final stage, the weighting functions are merged with the controller by defining the overall controller \(K(s) = W_1K_\text{post}W_2 \) as shown in Fig. 4(b). The size of model uncertainty is quantified by the stability radius \(\epsilon \) (refer to McFarlane and Glover [1992] and Skogestad and Postlethwaite [2005] for more details), i.e. the stability margin. For values of \(\epsilon \geq 0.25 \), 25% coprime factor uncertainty is allowable. However, in this paper the coprime factor uncertainty is set to 15% i.e. \(\epsilon \geq 0.15 \).

In typical design the filter functions and thus the controller are to be kept as simple as possible. Thus, the \(W_1 \) pre-compensator, is chosen as a single scalar weighting function set to unity. For the \(W_2 \) post-compensators there can be five weighting functions that are used depending on the selected sensor set. The airgap \((z_1 - z)\) measurement is a compulsory measurement required for proper maglev control of the magnet distance from the rail and thus a low pass filter \((W_{(z_1 - z)})\) is chosen with integral action allowing zero steady state airgap error (for the nominal performance). The weighting functions are given as

\[
W_1 = 1; \quad W_2 = \text{diag}(W_1, W_6, W_{(z_1 - z)}, W_4, W_5) \quad (15)
\]

with

\[
W_{(z_1 - z)} = \frac{s \omega_b}{s + \omega_b A_p / n_p} \quad (16)
\]

The above results in a minimum phase and stable weighting filter with roll-off rate \(n_p \). Note that there exist 2^4 candidate sensor sets and that the airgap sensor is always required.

3.2 Multi-objective Constrained Optimisation

Heuristic approaches are very powerful optimisation tools which are used in many engineering problems. Particularly the GAs have been extensively implemented in control engineering (see Fleming and Purshouse [2002]). Different types of GAs have been developed in recent years and they are well summarized by Konak et al. [2006]. In this research work, the recently developed GA based on non-dominated sorting of the population. Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used that proves to be a powerful optimization tool. For the interested reader details on NSGA-II are described by Deb et al. [2002]. NSGA-II is an evolutionary process that requires some parameters to be assigned in order to ensure proper population convergence towards Pareto-optimality. These are mainly selected from experience rather than from a-priori knowledge of the optimisation problem. The crossover probability is generally selected to be large in order to have a good mix of genetic material. The crossover probability is set to 90% and the mutation probability is defined as \(1/n_v \) where \(n_v \) is the number of variables. The population consists of 50 chromosomes and the stopping criterion is the maximum generation number \(N_{\text{gen}} \). \(N_{\text{gen}} \) has a significant role on the Pareto-Optimality and the computational time i.e. the higher the generation number is the longer the computational time but it is more possible for the evolved population to converge and finally spread onto the optimum Pareto front. \(N_{\text{gen}} \) depends among other factors on the number of variables to be tuned because the larger the number of variables is a larger \(N_{\text{gen}} \) is required with the expense of having longer computational time. In this problem because the number of variables varies according to the number of sensors, \(N_{\text{gen}} \) is set at 200 for sensor sets with up to 3 sensors and for the rest including the full sensor set is set at 250 generations.

In order to achieve the desired closed-loop response a constraint handling technique is necessary. Constraint handling methods with genetic algorithms can be done differently as Coello [2002] indicates. The dynamically updated penalty function approach is used here to achieve the control constraints. A rigorous description of this method for the proposed systematic framework is described by...
satisfied. The overall constraint violation function is given as

$$
\Omega(f^j, f^i) = \sum_{j=1}^{J} w_j f^j(k^j) + \sum_{i=1}^{I} \psi_i f^i
$$

where, ω_j is the j^{th} soft constraint violation for the corresponding j^{th} quantity to be constrained (k) and J is the total number of soft constraints. Similarly, ψ is the hard constraint violation for the i^{th} quantity to be constrained (f). The overall constraint violation function serves as a controller selection criterion within the systematic framework as described at the beginning of this section.

3.3 Robustness assessment within the framework

Taking advantage of the fact that any changes in the closed-loop response (both stability and performance) will be reflected on Ω in (17), robustness against parametric uncertainties can be tested in combination with MC technique. MC technique has been used in a variety of disciplines for many years now therefore the details are omitted. Monte Carlo is a probabilistic method that can be used to randomly sample the uncertain parameters of the EMS system and test them to test the closed-loop stability and performance. This can be achieved by using a number of samples, Q of the uncertain EMS and test them using the nominal controller. In this paper 100 samples ($Q=100$) of the EMS model are tested for each sensor set. Then, the worse-case value of Ω is taken that represents the worst-case response noted as Ω_{w-c}.

4. SIMULATIONS AND DATA ANALYSIS

The framework is tested in MATLAB R2009b simulation environment without Java function due to large computational need (simulation based). The computer used is the powerful DELL T610 with 2.39GHz Intel® Xeon® X5570 processor and 8GB RAM. The average simulation time per sensor set is about 2.5 hours while completion of the framework takes around 45 hours.

The controller selection criteria (f_{c_1}, f_k) for the desired closed-loop response are given as follows

$$
f_{c_1} \equiv \overline{\gamma} \leq 0.5 m/s^2, f_{c_2} \equiv u_{n_{rms}} \leq 10 V, \quad (18)
$$

$$
f_k \equiv \max(\epsilon) \quad (19)
$$

Recall that if f_{c_1} criteria are not satisfied then the best controller selection is done based only on f_k. The first set of closed-loop desired characteristics in (18) ensures that the controllers to be selected are within the limits indicated while the last criterion in (19) ensures that the selected controller has the maximum robust stability margin (maximum robustness).

From the results it was found that the proposed systematic framework is able to identify stabilizing controllers that satisfy (17),(18) and (19) for 11 out of 16 sensor sets. The other four violate (17) hence the performance is not satisfactory. However, they could be used if the constraint violation does not threaten the safety of the system.

Table 3 lists some sensor sets that are selected for comprehensive analysis of the results. The second column lists the sensor sets and the first the corresponding identification number. The next four columns are the variables from the closed-loop response with the stochastic track profile and the further four show the variable values from the deterministic profile. The next column is the resulting stability margin from the H_{∞} loop-shaping design and the 12th column lists the resulting RMS level of the noise on the input voltage. The 13th column shows whether the overall constraint violation function, Ω is satisfied or not (without any uncertainties i.e. the nominal closed-loop response). The last column represents the worse-case overall violation function, Ω_{w-c}. That is the maximum value of Ω among the resulted closed-loop responses using the Q samples of the uncertain EMS system. If the worst-case response is instability of the closed-loop then the Ω_{w-c} is assigned to be infinity.

Inspecting the Ω column that reflects the nominal performance of the EMS system it can be seen that id:1 and 2 violate the stability margin while the rest of the sensor sets satisfy it. Comparing the EMS performance with id:8 (i.e. the full sensor set) and the rest of the sensor sets is observed that similar nominal response can be achieved with fewer sensors eg. id:3. However, when the performance against parametric variations is assessed with Monte Carlo it becomes difficult to achieve robustness while in some cases the worst case is instability eg. id:1. The sensor set id:1 has a value of infinity Ω_{w-c} which means that there is a combination of uncertain EMS parameters that cause instability. The best robust performance is achieved with id:7 comprising of 4 sensors and it gives a Ω_{w-c} of 1.21 that means for a particular combination of the uncertain parameters there is some control constraint violation. Nevertheless, this is the best sensor set with which robust performance of the EMS system can be achieved. Figure 5 depicts the Pareto-Optimality with id:7 (note that the values are normalized around one for good resolution). It is clear that the trade-off between the objective functions is successfully found. Figure 6 illustrates the airgap deflections of the closed-loop response with the nominal controller and the deterministic input (the transition onto the track’s gradient) by sampling 100 uncertain non-linear models of the suspension. The response of the suspension is restricted to the requirements as listed in Table 2. Although the steady state error is not zero it is still very small and does not impose any serious danger for the operation of the suspension.
5. CONCLUSION

This paper has shown that the proposed framework is able to identify the best sensor set with which the control of EMS system is possible subject to multiple and complex requirements that otherwise would be very difficult to achieve by manual design of the control system. It has been shown that with id:7 it is possible to control a complex electromechanical system like the EMS with nonlinearities, uncertainties and multiple constrained control objectives. The framework is very flexible and without losing generality it can be easily adapted to many sensor selection problems in control systems provided that the dynamic model is well known.

REFERENCES

