Impacts of bioturbation on temporal variation in bacterial and archaeal nitrogen-cycling gene abundance in coastal sediments

Laverock, B. and Tait, K. and Gilbert, J. A. and Osborn, A. M. and Widdicombe, S. (2014) Impacts of bioturbation on temporal variation in bacterial and archaeal nitrogen-cycling gene abundance in coastal sediments. Environmental Microbiology Reports, 6 (1). pp. 113-121. ISSN 1758-2229

Full text not available from this repository.

Item Type:Article
Item Status:Live Archive

Abstract

In marine environments, macrofauna living in or on the sediment surface may alter the structure, diversity and function of benthic microbial communities. In particular, microbial nitrogen (N)-cycling processes may be enhanced by the activity of large bioturbating organisms. Here, we study the effect of the burrowing mud shrimp Upogebia deltaura upon temporal variation in the abundance of genes representing key N-cycling functional guilds. The abundance of bacterial genes representing different N-cycling guilds displayed different temporal patterns in burrow sediments in comparison with surface sediments, suggesting that the burrow provides a unique environment where bacterial gene abundances are influenced directly by macrofaunal activity. In contrast, the abundances of archaeal ammonia oxidizers varied temporally but were not affected by bioturbation, indicating differential responses between bacterial and archaeal ammonia oxidizers to environmental physicochemical controls. This study highlights the importance of bioturbation as a control over the temporal variation in nitrogen-cycling microbial community dynamics within coastal sediments. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

Keywords:Benthic environment, NotOAChecked
Subjects:C Biological Sciences > C180 Ecology
C Biological Sciences > C161 Marine Biology
Divisions:College of Science > School of Life Sciences
Related URLs:
ID Code:13359
Deposited On:17 Feb 2014 10:43

Repository Staff Only: item control page