Increasing Student Success, Engagement and Retention Through a Novel Approach to Mathematics Support

Michael Gallimore
Contents

• Background
• Traditional Approaches to Support
• Support is Two-Fold
 - Immediate (Diagnostic Testing)
 - Sustained (AFL)
 - Individual Learning Plans (ILP’s)
• Impact
• Future Work
• References
• Questions
Background

• Ever-increasing gap between secondary and university level mathematics.
• More diverse cohorts.
• Students are less prepared for shift in levels meaning transition is more difficult.
• Ultimately leads to poor retention, low success rates and lack of engagement.
• Means required to aid this transition through a mathematics support programme particularly in STEM subjects.
Traditional Approaches to Support

1) DIAGNOSTIC TESTING ON ENTRY
- Content often not thought through and has no real purpose
- Not used to inform future learning

2) ONGOING SUPPORT
- Often very informal and relies on students understanding their weaknesses
- Not tailored to individual needs
Support is Two-Fold

What mathematical knowledge do students require?

How do we target shortfalls in knowledge?

IMMEDIATE

How do we assess current knowledge?

Are there shortfalls in knowledge?

School of Engineering
Industrial Power and Energy
Support is Two-Fold

Initially Course Driven Cross-Curricular

IMMEDIATE

- How do we target shortfalls in knowledge?
- Are there shortfalls in knowledge?
- How do we assess current knowledge?
Support is Two-Fold

How do we target shortfalls in knowledge?

What mathematical knowledge do students require?

IMMEDIATE

Are there shortfalls in knowledge?

Diagnostic Testing on Entry
Support is Two-Fold

What mathematical knowledge do students require?

How do we target shortfalls in knowledge?

How do we assess current knowledge?

IMMEDIATE

Match current knowledge with required knowledge
Support is Two-Fold

IMMEDIATE

- What mathematical knowledge do students require?
- Are there shortfalls in knowledge?
- How do we assess current knowledge?

Individual Learning Plans (ILP’s) and tailored support
Individual Learning Plans (ILP’s)

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>Rounding DP's</th>
<th>Rounding SF's</th>
<th>Standard form</th>
<th>Laws of indices</th>
<th>Rearranging equations</th>
<th>Solving equations</th>
<th>Expanding & simplifying</th>
<th>Algebraic fractions</th>
<th>Expanding double brackets</th>
<th>Factorising</th>
<th>Quadratics</th>
<th>Simultaneous equations</th>
<th>Linear graphs</th>
<th>Pythagoras</th>
<th>Trigonometry</th>
<th>Conversions</th>
<th>PREVIOUS MATHS STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURNAME</td>
<td>FIRST NAME</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q5</td>
<td>Q6</td>
<td>Q7</td>
<td>Q8</td>
<td>Q9</td>
<td>Q10</td>
<td>Q11</td>
<td>Q12</td>
<td>Q13</td>
<td>Q14</td>
<td>Q15</td>
<td>Q16</td>
</tr>
<tr>
<td>Bloggs</td>
<td>Joe</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>E</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>Smith</td>
<td>Matt</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>E</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>
Support is Two-Fold

What mathematical knowledge do students require?

How do we target shortfalls in knowledge?

SUSTAINED

How do we assess current knowledge?

Are there shortfalls in knowledge?
Support is Two-Fold

Assessment Driven
Cross-Curricular Driven

How do we target shortfalls in knowledge?
How do we assess current knowledge?
Are there shortfalls in knowledge?

SUSTAINED
Support is Two-Fold

- What mathematical knowledge do students require?
- How do we target shortfalls in knowledge?
- Are there shortfalls in knowledge?
- Assessment For Learning (AFL)

School of Engineering
Industrial Power and Energy
Assessment for Learning (AFL)

- Random Questioning
- Explicit LO’s
- True/False
- Levelled Exam Questions
- Misconceptions/Find the Mistake
- Student Created Questions
- Think/Pair/Share
- RAG
- Peer Assessment

School of Engineering
Industrial Power and Energy
Support is Two-Fold

What mathematical knowledge do students require?

How do we target shortfalls in knowledge?

SUSTAINED

Are there shortfalls in knowledge?

Assessment For Learning (AFL)
Support is Two-Fold

- How do we target shortfalls in knowledge?
- What mathematical knowledge do students require?
- How do we assess current knowledge?
- Match current knowledge with required knowledge

School of Engineering
Industrial Power and Energy
Support is Two-Fold

What mathematical knowledge do students require?

Are there shortfalls in knowledge?

How do we assess current knowledge?

Individual Learning Plans (ILP’s) and Tailored Support

SUSTAINED
Impact on Retention

• The percentage of young entrants to full-time degree courses in 2008-09 who were not retained was 8.8% for engineering courses compared to 6.5% for all subjects.

WE RETAINED ALL STUDENTS IN THIS CATEGORY
Impact on Retention

• The percentage of mature entrants to full-time degree courses in 2008-09 who were not retained was 15.8% in engineering compared to 12.9% for all subjects.

WE ACHIEVED 5% IN THIS CATEGORY
Impact on Success & Engagement

• **Success** backed up by retention figures as no students left through under-achievement

• **Engagement** measured through regular feedback forms administered 3 times per year for each module studied. Support allowed students to focus on key areas of study.
Future Work

• Development of a Mathematics Support Website to facilitate on-line testing and improve student tracking.

• Introduction of ‘student expert’ system to encourage cross-institutional support and student mentoring.
References

ANY QUESTIONS?

Michael Gallimore

mgallimore@lincoln.ac.uk